
Background
An SoC is a combina2on of reac2ve components, called IPs that work
together to complete a set of intended tasks.

We can view a task as a message flow specifica2on, for example, CPU
downstream write. p1

t1 : (CPU X : Cache X : wr req)

p2

t2 : (Cache X : Cache X0 : snp wr req)p3

t3 : (Cache X0 : Cache X : snp wr resp)

p4

t4 : (Cache X : Bus : wr req) p5

t5 : (Bus : Mem : rd req)p6

t6 : (Mem : Bus : rd resp) p7

t7 : (Bus : Cache X : wr resp)p8

t8 : (Cache X : CPU X : wr resp)

t9 : (Cache X : CPU X : wr resp)

t10 : (Cache X : CPU X : wr resp)

p9
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Introduction
SoC is the hardware foundation for IoT edge nodes. Ensuring security
properties such as confidentiality and integrity is crucial for the
trustworthiness of IoT devices. However, due to the high complexity of
the global supply chain, ensuring the trustworthiness of diverse third
party suppliers becomes very much challenging. Thorough validation
of SoC foundation is critical to guarantee the safety and security of
those IoT edge nodes. Comprehensive and well-defined specifications
are necessary to perform rigorous and thorough validation of SoC
designs. However, in reality, such specifications are hardly available,
often incomplete and ambiguous[1]-[7]. In this work, we aim to
address such a challenge by proposing a sequential pattern mining
framework to automatically extract message flow specifications.

Problems Addressed
1. Post-silicon validation
2. Specification mining
3. False positive specification
4. Specification mining time

We characterize the patterns to be mined as:
q Set of events
q Strong temporal dependency
q In constant environment, each execution holds the rules  

Proposed algorithm works on execution traces captured by monitoring the messages among the IPs of an SoC.

Mining Framework Flowchart
We utilize association rule mining technique to mine sequential patterns from the execution traces. We also 
apply domain specific heuristic to reduce the huge search space of association rules. 

Mine Patterns: Using 100% confidence and recall to mine assertions that hold over all traces. The reason to 
mining assertion is to find out flows implemented by the IoT hardware core, which are invariant over different 
trace.

Chain Patterns: We apply 3 inference rules two chain shorter patterns to form complex patterns. The iteration 
between mining and chaining keeps going until all the valid rules are found upto a user defined length l.

Challenges

q High number of false positive patterns
q Difficulties with branches
q Long execution time
q Need for perfect traces
q High concurrency yields poor correlation

Mining sequential patterns of longer lengths has always been a
challenging task, especially for concurrent systems that are also
recurrent. Hence our proposed algorithm shows promising result
reducing the number of mined patterns

Conclusion
We mine strict ordering relations among the events. The mined
patterns will help to find violations for SoC internal communication
protocols. IoTs are sensitive systems in terms of security and
trustworthiness. Proposed framework will play an important role
making the task of edge node verification easier. We are currently
dealing with branching problems that may cause some valid
execution flows to be missing due to high strictness in confidence
and recall measure.
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Fig. 3: Cost of Silicon validation getting worse (source: intel)

Core      

I$

Core      

I$

In
te
rco

nn
ec
t

Coherence 
Manager

AXI

MEMORY

GFX

UART

USB

C     
T   
M 

Trace 
Port

Cache coherence
data 

IP communication
data

Monitor data

Fig. 1: An SoC prototype with different IPs
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Fig. 2: LPN formulation of a CPU write flow

Fig. 4: Post-silicon trace mining

Fig. 5: Mining framework

Fig. 5: Possible branch in flows

Tab. 1:  Result analysis from 57 distinct message of an SoC 

Start Mine Patterns Chain Patterns Stop

First-silicon under 
test

Silicon trace
p=e1e2….

Post-silicon trace mining 
framework

(Trace abstraction, 
trace interpretation)

Flow execution 
scenarios

Post-Silicon bug count

Year

Pattern Length Total Search Space Mined Patterns

2 1806 182

3 74046 115

4 2961840 290

5 115511760 495

6 4.38944E+9 969

7 1.62409E+11 1538

8 5.84674E+12 3341


